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The intention of this paper is to study a family of positive linear approximation
operators relating to most of the well known Bernstein-type operators. These
operators depend on a parameter. We give some characterization theorems to show
that the operators corresponding to different parameters can be quite different. The
direct and converse results make use of the Ditzian—Totik modulus of smoothness.
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1. INTRODUCTION AND BACKGROUND

We will study some local and global characterization results for a family
of Bernstein type approximation processes P, on I:=[0, 1] defined as

PAfix) = S pod(x) T s, (11)
k=0

with the positive linear functionals T, ,: C(/) = R for k=0, .., n

o fo f(2) tFF 41— )" =0+ gy
" B(ck+a+1,c(n—k)+b+1)

T, f) a,b>—1 (1.2)

and p, (x)=(}) x"(1—x)""* xel, neN.

* The second author is supported by a grant from Alexander von Humboldt-Stiftung.

145
0021-9045/96 $12.00

Copyright © 1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.



146 MACHE AND ZHOU

Here we will use for ¢ the special sequence in n and a, with ne N,
0<a< oo, defined as

c:=c,:=[n"], (1.3)

the integer parts. This family covers among other things the classical
Bernstein operators, the Bernstein—Durrmeyer—Lupas operators (Durrmeyer
[10], Lupas [14]) and the de la Vallée—Poussin type operators (Lupas
and Mache [15]).

It turns out that the approximation properties of some operators in this
family P, are somewhat similar.

We can remark that a generalization of this family was introduced by
D. H. Mache [17] in the form

D.AF %) =i 8Lt (o) )

sl ak _ /7/\ dt °

where o, e/ and fe L, ().

As usual L, ,(I) denotes the set of all measurable functions f on [ for
which the corresponding norm | f|, ,, :=Sé | f(2)] w(t) dt is finite with the
weight o, defined as w(1) :=w, (1) =1(1—1)", a:=infy_j <, 0<p< oo dr>
b:=infy 1 <po<n<ow bi, Where a;,b,>—1 depend upon neN and
k=0,1, .. n

This polynomial sequence (D,),. ., includes a number of well-known
positive linear approximation operators:

e For a,=1/(n+1) and a,=b,=0, k=0,1,...,n we obtain the
classical Bernstein—Kantorovi¢ operators K

e for a,=0 and also a,=b,=0, k=0, 1, ..., n, the classical Bernstein
operators B,,

e for a,=1 and a,=k, b,=n—k, k=0,1,.., n the Bernstein—
Durrmeyer—Lupas operators M, (cf. Durrmeyer [10] and Lupas [14])
defined by

ML= 1) 3 ) [ pal) S10) i
xe[0,1], neN, feL,0,1].

As a generalization, Berens and Xu proved in the interesting paper [4] a
number of nice properties for ay=--- =a,=:a> —1 and by=--- =
b,=:b>—1:
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e fora,=1and a,=k+a, by=n—k+b, k=0, 1, .., n, the operators
of Piltinea M “ (Piltinea [21]), defined by

MPFx) = fo 1) p, (1) (1 —1)" dt
n(fax) an,k( fop,,’k (1= )hdl ,

xe[0,1, neN, feL, [0,1].

In the case a=b= — 1, one researched in (see Lupas and Mache [ 15]) the
de la Vallée-Poussin-type operators V,,
o for a,=1/(n+1) and ay=---=a,=:a>—1, by=---=b,=:

b> —1 we get a generalized form of the Bernstein—Kantorovi¢ operators
(cf. Mache [17]), namely

Z b0+ 1) £ /1)) 40— 0" d
Pl Blat1,b+1) :

(S x) 1= (1.5)
where xel, neN, felL, ,(I), and B(u,v) is the beta function for the
parameters u and .

The purpose of this paper is to derive some common and different parts
of these known and also somewhat new operators.

But first let us describe in a short way the connection lines to the above
operators, for which we will present in the following section the local and
global results.

A function 4: [a, b] — R is called convex, if for all x,, x,€[«, b] and all
o, € I, Jensen’s inequality

(o, x;+(1—a,) x5) <a,h(xy)+ (1 —a,) h(x,)
holds. For x; =t and x, =k/n one obtains for every convex function /4
D, (h; x) <o, Q,(h; x) + (1 —a,) B,(h; x), (1.6)
where P, is defined for feL, ,[0,1] by

" 11 — 1) dt
:lgopn,k( io.“(l) ﬂk — )bkdl . (17)

Here we can say that D, h—o, Q,h<(1—«,) B,h is like a disturbance—or
interference—operator.
2. MAIN RESULTS

Now we will present the direct and converse approximation results for
the above-mentioned method P, in (1.1).
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To formulate the results, let (0 </ <3)

A5 f(x) :=f(x+h)=2f(x)+ f(x—h),  xe[h 1—h] (2.1)
wy(f;6):= sup  sup |4;f(x)], (2.2)

O0<h<o xel[h 1—h]

Lip*B:={fe C); wo(f:0)=0(5"),650,}, 0<p<2. (2.3)

THEOREM 2.1. Let (P,), . be defined as in (1.1), fe C(I), and 0 <o < 1. If

e (Case 1) 0<f<1 for a=0, or
o (Case2) 0<fi<a+1 for 0O<a<l,

then

n n

() — P(f3 )] < c(x“ —x) +12>M, el (24)

if and only if
wy(f; 1) = O(1F). (2.5)

For a + 1 < <2 the above equivalence does not hold.
At this point we mention that in this paper the constant C denotes a
positive constant which can be different at each occurrence.

Remark 2.2. The case « =0, =1 is impossible which can be seen from
the example f(x)=xIn x (Zhou [24]).

THEOREM 2.3. Let (P,),.n be defined as in (1.1), fe C(I), and o> 1.
Then the same equivalence as in Theorem 2.1 is true for 0 <pf <2.

The proof of this theorem is the same as that of Theorem 2.1 and will
be omitted.

Thus, there exists no “cut off” for « > 1 while the “cut off” is in 1 + « for
0 <a < 1. Therefore, we find that the operators P, for a« >1 are very nice,
which can be seen from the following surprising three results (Theorem 2.4,
Corollary 2.5, and Theorem 2.6).

THEOREM 24. Let (P,),.n be defined as in (1.1), fe C(I), and o> 1.
Then

r=Pufl=c(of 5 ﬁ)w b L) el (26)

where the constant C is independent of n and o, and a)i( f; )., denotes the
second order Ditzian—Totik modulus of smoothness of f (c¢f. Ditzian and
Totik [9]) especially for the sup-norm and the step-weight ¢ =./x(1 — x).
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COROLLARY 2.5. By letting oo — o0 in (2.6) we have a well-known result
for the classical Bernstein operators

If—BJstCwi<ﬂV%>, nen, 2.7)

where the constant C is independent of n.

Here one can see that the approximation properties of the above
operators are closely related to the smoothness behaviour of the function
f they approximate. Without claim of completeness we mention the
following interesting papers, which deal with well known Bernstein type
operators and their approximation properties [4, 6-8, 221.

THEOREM 2.6. Let (P,),.n be defined as in (1.1), fe C(I), and a>1.
Then for 0 <pf <1,

If =P, fll..=0n"7) (2.8)
if and only if
o (f3 1), = 0(1%F). (2.9)

Remark 2.7. We have for the Bernstein—-Durrmeyer—Lupag operators in
the case o = 0 the worst case as seen in Theorem 2.1 and the following last result.

THEOREM 2.8. Let (P,),.n be defined as in (1.1), fe C(I). Then the
estimate in Theorem 2.4 does not hold for o.=0.

Remark 2.9. An open question is whether there exists a somewhat
weaker estimate than (2.6) for the Bernstein—-Durrmeyer—Lupas operators
with ¢=c¢, =1. It scems to be desirable to have an estimate similar as in
(Mache and Zhou [20, (3.14)], here with n—!). Clearly, for f'e C(1)

renlson (7 S0 e

Further properties of this approximation processes (also for ¢ =c, =[n"],
with 0 <a < 1) will be investigated in a forthcoming publication [ 18].

2.1. Some Properties of the Operators P,

By simple computations one finds

LemMma 2.10. Let (P,),.n De defined as in (1.1). Then P,(ey; x)=1 and

Blec(n—k)+b+1,m+ck+a+1)
B(ck+a+1,c(n—k)+b+1)

s m=1.

=ip #(X)
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In particular, we get

1

Pe;x)=—
n(elax) Cn+a+b+2

(a+ 1+ cnx)

and

(a+1)(a+2)+(2ca+3c) nx +c*(n*x —n(n—1) x(1 —x))

P ; X)=
n(eZDX) (a+b+cn+2)(a+b+cn+3)

For Q, .:=(t—x)", reN, we obtain

_at+l—(a+b+2)x

P,(2, ;x)= ntathi2 (2.11)
and
cle+ ) nx(l=x)+(a+b+2)a+b+3)x>
P(Qy ix)= —2x(a+1)a+b+2)+(a+1)a+2)
R (a+b+cn+2)a+b+cn+3)
Moreover, for x €,
Pn(szx;x)<2(a+1)+(b+1)(b+2)+(c+1)x(1—x)[/j”(x)’ (2.13)

(cn)? cn

where

1 xek 1 1
=< " E,.=|—1-—=].
e {0’ i E L, n}

At this point we can note that the order of approximation increases near
to the endpoints of the interval 1. So let us characterize the local con-
vergence for the positive linear operator P, by the elements of the Lipschitz
class Lip 5. Here the local behaviour of a function will be measured by a
maximal function f; , which is defined by Lenze [11] as

f7(x):= sup MOZJ0L o o<pet. (214

t#x,tel |x_t|ﬁ

We have the following local direct estimate.
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THEOREM 2.11. Let P,, neN, be defined as in (1.1). Then for fe C(I),
xel,

() — P x)| <S5 (%) <(C+l)x(l—x)+2(a+l)+(b+1)(b+2)>ﬁ/2’

cn (cn)?
(2.15)
where ¢ :=c,, is defined in (1.3).
Proof.  With the inequality for fe (0, 1]
/()= fOl<lt=xIP f7(x),  (x,0)elx],
we have by using Holder’s inequality for p=2/f>1
[P,(fs %) = f() <5 (x) Pt = x|75 x) < f 5 ()Pt — x| x)) V7

<f/;’ QZ x> ))/)’/2,
which concludes the proof. ||

Similar results have been proved by Lenze [12], Mache [17], and
Mache and Miiller [19].

Remark 2.12. Tt does seem not to be known whether there are local
converse theorems. So it is an open problem to give local equivalence
results taking into consideration that a simple local change of f can
influence the polynomial P, f on the whole interval .

In order to prove global direct and converse approximation results we
need the following Bernstein type inequalities.

LemMa 2.13. Let ¢(x) :\/m and neN. Then for fe C(I)
1Pl < Cin? [ flos (2.16)
l@*P, [, < Con | f]... (2.17)
and for smooth functions f e C*(I)
1P f o < 1" M o s (2.18)

lp?Prfll.. < Csllof"Il.e, (2.19)

where the constants C,, C, and C; are independent of n and f.
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Proof. For simplicity we consider only the case « =b =0. Then P,, f has
the representation

1) 11— 1) =9 dt
(ck+ Le(n—k)+1)

PAfix)= 3 po sl 10T

n 1
=(cn+1) ), puulx) fo () pen, al2) dt. (2.20)

k=0
Hence for xe1,

1P(fi0l <1 (2.21)

The first derivative of P, f'is

n—1

P;(f’ x) :n(cl’l + 1) Z pnfl,k(x) L)] f([)(pan, c(k+l)(t) _pcn, (k(t)) d[

k=0
n—1 1 ck+1)—1
aent1) 3 pucsal) [ S0 L (o) = pen (1) de
Jj=ck
n—1 clk+1)—1 1
=1 Y poial) X [ SO parir ) e
k=0 j=ck 0
and the second derivative of P, f'is
n—2 ck+2)—1 .1

P::(f;x)=n(n—1>zpnz,k(x){ S [ S0P dr

Jj=clk+1) 0
ck+1)—1 .1

=Y [ S0

Jj=ck 0
n—2 ck+1)—1 c—1
=n(n—1 n_o (X
(=1 T paasl) T 2m+2

1
<[, S0 a0
Making use of

1
f() pcn+2,j+l+2(t) dl

_ (en+2)! 1
= Grir 2 en—j—p BUH IS en— =+ ="m
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it follows that
[P Sl e < IS oo - (2.22)

Different representations for (P, f) and (P, f)" are

n—1

1
P;(f» X) =n(cn + 1) Z pnfl,k(x) J‘O f'(t)[pcn, (‘(k+l)(t) _pcn, (‘k(l)] dt
k=0
(2.23)
and
P =n(n=Den+1) T pu 24 [ ADLPon 20
k=0

_2pc‘n, L'(k+1)(t) +pcn, (k(t)] dt (224)

Since for a e N,

1 B (cn)! . o

jo Panctrol ) = LT (en e —ayy Bk @)+ L=k —a)+ 1)
_ 1
Ten+ 1

we obtain from (2.24) the upper bound

-2

[Py fs )| <dn(n—1) Y puslX) Ifll. <Cin? | 1
k=0

In the same way as that in [9, Chap. 9] the other two inequalities are
proved. ||

2.2. Proof of Theorem 2.1

We will start to prove the direct part.

It is known (cf. Berens and Lorentz [ 3]) that f € Lip* f is equivalent to
feLipf when 0<pf <1, and to f'eLip(f—1) when 1 <f<2. So we
obtain a “precise characterization” result for f# 1. For the case f=1 the
class is Lip* 1 (> but #Lip 1).

At first let 0<ff<1 for « =0 (Case 1) and 0 <a <1 (Case 2):

Then w,(f; t) < Ct’ and, from (2.15),

x(1—x) l>/’)/2
+)
n n

PL(fx)— ()] < C<
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Now let 1<f<a+1<2 Then feC'I) and f'eLip(f—1), say
w,(f"; 1)< Ct*~ . Then

1Pu(f3 %) = f() S TPL(f'(x) Q1+ f(1) = f(x) = [1(x) 2, 5 %)
<[ [PA(R2y, 3 )]+ P(C 1t = x]7; x)
SCUS oo n ™ 7%+ (P25 3 X))}

, . (x(1=x) 1 B2
<C{|f|mn ! +< +n2(oc+l)> }

n

— B2

co(=0, 1y
n n

The Proof of Theorem 2.1 for f =1 in the Direct Part. This part is quite
different.

Here we will follow along standard lines using the modified Steklov
means defined for d > 0 by (cf. Butzer and Scherer [ 5, p. 317], Ditzian and
Totik [9], Becker [ 1, p. 135])

N2 pdf2 pdf2
Sa(s) = <d> J f 2f(s+u+v)—fls+2u+2v))dudv. (2.25)
o Yo

Let w,(f;t)<Ct. We extend f to [0,2] in the same way as Berens and
Lorentz [ 3] such that

,(f5 )21 <Sa,(f; 1) < 5Ct
For feLip* 1121 we have fe Lip %21 for any 0 <y <1 [3, p. 694], say
w,(f; 1)< CP.

For such an extension one obtains

a
ruor=(3) 2 [ (svue ) st ]

_%Jd/z [fls+2u+d)— f(s+2u)] du}, (2.27)

st =(3) [ [ s awan (226)

1NV - -
0 =(3) (843500~ 231100} (228)
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Here we denote for A > f the second forward differences A 2f(x):=
f(x+2t)=2f(x+1)+ f(x), and hence

= fall <l f:d) < (2.29)
2

<3 (3) o <ca (2.30)

/5] <9d 2wy f;d) < Cd ™. (2.31)

Applying (2.21), we have for xel

|P(fsx) =) <2 f = Salloe + |Pu(fas X) = fa(X)]
S2IS=Salw+1fa(x) PR s )+ [ fallo P2, 5 x)

| I /x(1—x) 1
<C<d+d/ 1n1+°‘+d< . +n2“+°‘)>>’

where the constant C is independent of x, d, and n. Choosing now

d:<x(1_x)+12>1/2

n n

gives

IP,(f: x)— f(x)| < c<2 <x(1 _x)+12>1/2+n1> < C<x(1 mb) +12>1/2,

n n n n

which completes the proof of the direct part of Theorem 2.1 for f=1. |

Proof of the Inverse Part. Following the arguments in [ 3, pp. 694] via
the regularization process by Steklov means (see (2.33)), it is sufficient for
the converse approximation result to prove (cf. Becker [2])

,(f3 h) < C{6P + 1?6 2w, (f; 0)}. (2.32)
Suppose that

x(1—x) 1>”/2
+)
n n

IPL(f2x) — ()] < c(

for0<f<l+4+aand xel
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Let neN, xel, 0<t<h<i, 5(n,x,t)=max{1/n,<p(x+t)/ﬁ,

—t/f o(x /ﬁ}, x+tel

Then we have
Lf(x+1) = 2f(x) + f(x — 1)
S x+0)=P(fix+ D[ +21f(x) = P,(f; ¥)]|
HIfx =) =P,(fix =) + |47 P,(f; x)|
S CO(n, x, )+ |A7P,(f = f5: )| + 47 P, f53 x)].
We introduce the Steklov means

52 o2
fé(x):=5*2j6/2 f(x+utv)dudy, xel (2.33)

—o2

Here f; € C*(I) is taken over § > 0, which will be determined later. We have
two well known estimates (see also Becker [2, p. 147]),

If = sl < Cas(f30)  and | f5].. < CO2wy(f: ).

Then with the Bernstein-type inequalities (2.16) and (2.17),
|A12Pn(f_fa9 X)|

12 /2
<[ [ 1Pus— s xtuto) dudo
12 2

12 /2 n
<C min {n?, ———— £l dud
j—;/z J71/2 {I’l (,oz(x—i-u—i-v)} I/ =fsl u dv

(s 612
<C‘|f_f¢)‘”ocm1n {I’l t ﬂnmax{goz(x)’ (pz(x+t), (pz(x—l)}}

<6C | f =[5l 2(0(n, x, 1) 2
< Coy(f30)(0(n, x, 1) 212

Here we have used a known result (see [2, Lemma 2]) that for 0 <h <4,

f J du dv 61>
—p o @A (xHutv) T max{p*(x), p2(x+1), A(x— 1)}
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We also have by (2.18)

2
Pi(fs;x+u+v)dudy

—1/2

[47P,(f5: x

i
< CE | f5] .. < Ct202wy(f; ).
Combining all of the above estimates, we get
|47 f(x)| < C{(d(n, x, 1)) + w,(f; 0) 12(d(n, x, 1)) >+ w,(f; 6) 1702},
Putting 6 =d(n, x, t) and noting that 0 <7</ we have
|47 f(x)] < C{(d(n, x, 1)) +h*(5(n, x, 1)) > w,(f; 6(n, x, 1)) }. (2.34)

Observing that d(n, x, ¢) is tending to 0 for n — oo and that

o(n, x,t)<o(n—1, x,t)<20(n, x, t).
For any 0 >0, there exists an ne N such that

on, x, 1) <0<20(n, x, t).

Therefore for any +>J>0 and 0 <¢<h< % we have

|47 f(x)| < C{0P + h?0 2w, ( f; 9)}, (2.35)
where C is independent of 4, J, x and .

Summarizing, we conclude (2.32) and by using the Berens-—Lorentz
Lemma [ 3, pp. 694] we have

w,(f3 h) = O(hP), (2.36)

hence f' e Lip* 5, which completes the proof of the first part of Theorem
2.1.

Next we prove the second part. For « =0 and 1 < f <2 the equivalence
of (2.4) and (2.5) does not hold, which can be proved by the same method
asin [23]. For 0<a<1 and 1 +a < ff <2 consider f(x)=x. It is obvious
that (2.5) holds. On the other hand, by taking x = 1/n we can see that

a+1—(1/n)a+b+2)
cn+a+b+2

>

|f(x)=P,(f; )| =|=P,(Q) s x)| =

showing that (2.4) does not hold for any constant C. Hence (2.4) and (2.5)
are not equivalent. The proof of Theorem 2.1 is complete. ||

The proof of Theorem 2.1 shows that the equivalence can be improved
in the following way.
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COROLLARY 2.14. Let (P,),.n be defined as in (1.1), feC(I), and

O<a<]1. Then for 0<f<o+1,

feLip* g (2.37)
if and only if

_ B2
mm—MﬁmmcK“;”>4mﬂHwM+nlﬁ, el
(2.38)

where the constant C is independent of n and .

2.3. Proof of Theorem 2.4

The essential part for this proof is the equivalence of wi( f;+),, and the
modified K-functional (cf. [9])

KY(f: ) i=inf{ | f—gl. + 27 97¢" | . + ¥ lg"]l.. | g" € C(D)}, (2.39)
1e.,
WL (f3 ) ~ K(f5 1)

We expand geC*(I) by g(1)=g(x)+g'(x)(1— +§ (t—v)g"(v) dv.
Making use of [9, Lemma 9.6.1]) we have for ¢?(x ) —(1+2e)

)

["o2w) lg" ) v

X

|P,(g; x)—g(x)|

J’ (t—v) g"(v)dv

X

@gunwwxjmn+m<

|1 — x|

?*(x)

)

QEMHWM%JMN+h<

Q,
<|g'(x)] IPn(Ql,x;x)|+P;1< >|</’2 s
® (X)

<ClIgllen™ = +n" " lp?g"] .}

For ¢*(x)<n~ "+ we have

1P,(g:x) =g <Clgll,n™ ~*+ P25 :x) lIg"]..

2
’ —1—« % (x) 1 ”
cliglon =+ (E e )it}

<SCln 7' g e+ 0 I
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Altogether,

1
IPag =gl < C 1ot (gl + g .

Hence for a>1

1P f =fle <IPAf =l + P8 —gllo + 1/ =&l
<SQ+O)If =gl +C{in g%,
+n g+ Cn S

and by taking the infimum over ge C*(I) we obtain

_ 1
IPuf=f1 <@+ ORE (fir) + O U7

[ee]

<cfoz(r %)wm—l—“ 71,

which proves Theorem 2.4.

Using the inequalities in Lemma 2.13, we can prove the inverse part of
Theorem 2.6 by the standard method in [9, Chap. 9]. The direct part is a
corollary of Theorem 2.4. We omit the details of this proof.

Finally we give the proof of Theorem 2.8.

2.4. Proof of Theorem 2.8
Suppose that (2.6) holds for « =0. Take f(x) =xIn x —x, f'e C(). Then
we have

lo*f "Il = max |1—x|<L

0<x<
Hence
2 1 —1 C
7 7

On the other hand, by Taylor’s expansion around x

SO =100+ L=+ [ (=) ) du

we have

PS5 %) = () =/'(x) P, X) + P, ( [ (=) 70 du x>.

X



160 MACHE AND ZHOU
Therefore with the moments of P, we obtain for xe[1/n, 1 —1/n]

)

) P2y ) < IS — 1] +P,,(

[t —uy 7y

Q X "
<Pnf—f|m+Pn< = ;X> %"l

@*(x)
C C /o3 x) 1 4C
<— S |<—.
n @*(x) < n ”2> n

Especially for x =x, =1/n we would obtain

a+1l1—(a+b+2)x,
ecn+a+b+2

4C
<—.
n

/06 P21 s )] = ‘m X,

This would mean that for sufficiently large #,
Inn<C,

which is a contradiction. Hence (2.6) cannot hold for « =0, which com-
pletes the proof of Theorem 2.8.
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